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* Markov Hierarchical Variational Auto Encoders (MHVAEs)
* Autoregressive Encoder and Autoregressive Decoder of an MHVAE
e Derivation of the ELBO of an MHVAE

* Diffusion Models as MHVAEs with a Linear Gaussian Autoregressive Latent Space

* Forward Diffusion Process

e Reverse Diffusion Process

e ELBO for Diffusion Models as a particular case of the ELBO for MHVAEs

* Implementation Details: UNet Architecture, Training and Sampling Strategies

* Applications of Diffusion Models
 Stable Diffusion: Text-Conditioned Diffusion Model
e ControlNet: Multimodal Control for Consistent Synthesis
* Image Editing: DDIM, P2P



Latent Space Image Editing: Inversion + Manipulation

* Diffusion models so far can be used for image generation.
e Stable Diffusion performs text-to-image conditioning in a rich latent space.
e Can we use the latent space of diffusion models to perform image editing?
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x =G(z), z~N(0, 1)

(a) invert real image into latent space
z*= arg min (G(z), x)
Z

e / Inversion

(b) manipulate the inverted image in
the latent space

x = G(z*+n;) x = G(z*+n,)
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Naive Image Editing ldea

* Instead of starting from pure noise, let us perform naive inversion using the
forward process and a fixed image.
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image of a puppy
on the grass

Reverse process with conditioning:
“image of a cat on the grass”
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* Depending on how much noise is added, we can change a lot of features in the
image or not enough features.



How to improve the inversion?

* Problems

* Randomness in the model: if we encode x4 to x; using the forward process and then run
the reverse process, we will not get x.

* The reverse process requires T sequential steps, which can be slow.
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* We will introduce a sampling process that allows for better inversion and image
editing.



Designing Faster Processes

* In diffusion models, the reverse process is designed to approximate the forward
process.

If we had a forward process with few steps, the backward process
would also require a small number of steps to sample a new image.

* How can we design sampling processes with less number of steps?
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* We will generalize the Markovian forward process of DDPM to non-Markovian
processes to obtain a large family of models.

* Then, we can select a diffusion process that can be simulated in few steps to
achieve fast sampling!



Generalized Non-Markovian Processes

* Define the generalized posterior distribution

Xe—+/ A X
(Xp—1 | X0, x0) = NV (\/ Ar—1Xo T \/1 — g1~ tl\/%o, 1),

where g, > 0 is a variance parameter.

* The generalized posterior g is designed such that it maintains the same forward
distribution q(x;|x,) as in DDPM.

* Different choices of g, = 0 result in different generative models.

* For o, = \/B;, we obtain DDPM.
* Foro; =0,Vt = 0, the process is

* We will see that setting g, = 0,vt > 0, will allow for deterministic denoising and
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ELBO for the Generalized Process

e Recall our ELBO derivation
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reconstruction term

* The KL divergence for Gaussians
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* Choosing mean of pg(x;_ | xt) to match form of mean of q(x;_1 | x¢, x¢)
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e The ELBO reduces to:

DKL(Q(xt—1 | X, x0) || Po(xe—1 | x¢ )) = Dy, (N(xt—l;.uq(xt; Xo), Zq)|| N(xt—liﬂe (x¢, t):zq))
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What have we achieved so far? R e e i

* We created a with the same training
objective as in DDPM.

* The generalized process captures a rich family of generative processes depending
on the selection of the parameter o;.

* We can select g; to achieve much

* Recall that pg(xi—1 | x¢) = N (xp—q; ug(xe, t), o£1) and thus
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Denoising Diffusion Implicit Models (DDIM)

* DDIM uses g, = 0,Vvt = 0 in the generalized process.

* We can sample using the equation
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direction pointing to x;
* This gives us deterministic sampling.

. Consider the forward process x;.+ of DDPM. DDIM uses a subset
{t4, ..., Ts} of length S of the whole DDPM process and inverses that process.

* In practice, S < T and in this way we can obtain faster sampling!
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Sample Efficiency of DDIM

« DDIM with only § = 10 steps of reverse process achieves better FID score
than DDPM with 1000 steps in the reverse process.

n: noise added at CIFAR10 (32 x 32) CelebA (64 x 64)
each step of the S 10 20 50 100 1000 10 20 50 100 1000

reverse process

DDIM 0.0 || 13.36 6.84 4.67 4.16 404 | 17.33 1373 917 6.53 3.51
0.2 || 1404 7.11 4.77 4.25 4.09 17.66 14.11  9.51 6.79 3.64
0.5 v 16.66  8.35 5.25 4.46 4.29 1986 16.06 11.01 8.09 4.28
DDPM 1.0 | 41.07 1836  8.01 5.78 473 | 33.12 26.03 1848 1393 598
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Figure 3: CIFAR10 and CelebA samples with dim(7) = 10 and dim(7) = 100.



What have we achieved so far?

* For image editing, we required exact inversion of the diffusion model and fast
sampling.

* DDIM with g; = 0 provides deterministic sampling in a few steps.

Input: “A photo of a cat on a couch”

* To perform image editing with DDIM:
1. Encode: Run the forward process to get x;
for some intermediate t (partial noising of x).
2. Edit: Modify the conditioning input.
3. Decode: Run the reverse DDIM process using »
the new conditioning to get the modified image. Edit: “A photo of a tiger on a couch”

* Next, we will see how to perform even more advanced edits in this space.
* One example: Prompt2Prompt (P2P)



Prompt2Prompt

* DDIM Inversion has no symbolic (rigid) control for structural consistency.

* Prompt2Prompt (P2P) proposes to save the cross-attention maps during
the forward process, edit the image and reuse the same attention maps
during the reverse process.

Source image and prompt:

“photo of a cat riding on a bicycle.” f.;; ~

bicycle — motorcycle %)

W.O. attention injection Full attention injection




Prompt2Prompt

* The spatial layout and geometry of the generated image depends on the cross-

attention maps.
.E % F

synthesized image “a furry bear watchmg bird”

Average attention maps across all timestamps
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* To edit an image with P2P:

Pixel features Pixel Queries (}'okens Keys) v§é;‘ ;l;_okensls) Va]ue; Output
rom Prompt T rom Prompt
1. Run the forward DDIM process H_, B o o R, (=
T

to save the attention maps of 50 @ v ™

Text to Image Cross Attention

the initial image.
2. Edit: Compute the attention maps == ‘m = s @//4- S
corresponding to the edit prompt. s HE |m T |H@
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3. DeCOde: Inject the edited attention Word Swap Adding a New Phrase Attention Re—weighting
maps to the reverse process and get edited image.



Samples of Edited Images

“Photo of a cat riding on a bicycle.” “A photo of a butterfly on a flower.”
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Conclusion on Image Editing

* The latent space of diffusion models can be used for image editing.
* Image editing using DDPM faces the problems of inversion and slow sampling.

* To speed up the sampling process, we considered a generalized non-Markovian
forward process.

 DDIM provides deterministic reverse process and fast sampling.

* Prompt2Prompt allows for edits in the image, while maintaining the structural
properties of the initial image.
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